	Question	Expected Answers	Marks	Additional Guidance
1	а	Answers clockwise from top left	4	ALLOW skeletal formula
		CH ₃ CH ₂ COOH ✓		ALLOW butanoic acid
		CH ₃ CH ₂ CHCH ₂ ✓		ALLOW but-1-ene
		CH ₃ COOCH ₂ CH ₂ CH ₂ CH ₃ ✓		ALLOW butyl ethanoate
		CH₃CH₂CHO ✓		ALLOW butanal
				If name and structure given both must be correct
				If C ₃ H ₇ used instead of CH ₃ CH ₂ CH ₂ penalise once and then apply ECF
				If wrong carbon skeleton used then penalise once then apply ECF
				If a hydrogen is missing then penalise once

Question	Expected Answers	Marks	Additional Guidance
b i	Nucleophilic substitution ✓ Heterolytic ✓	5	ANNOTATE WITH TICKS AND CROSSES
	Dipole shown on C–I bond, $C^{\bar{o}+}$ and $I^{\bar{o}-}$		DO NOT ALLOW fish hooks
	Curly arrow from OH⁻ to carbon atom of C–I bond ✓		No need to show lone pair on OH ⁻ or I ⁻ Curly arrow must come from the negative sign or lone pair on the oxygen of the hydroxide ion
	Curly arrow from C–I bond to the iodine atom ✓		н
			$\begin{array}{cccccccccccccccccccccccccccccccccccc$
			ALLOW S _N 1 mechanism
			dipole shown on C–I bond, C ^{δ+} and I ^{δ−} ✓
			curly arrow from C–I bond to the iodine atom ✓
			curly arrow from OH⁻ to correct carbonium ion ✓
ii	Use reflux OR heat for more than 20 minutes ✓	2	ALLOW heat stronger OR heat for longer OR heat at a higher temperature OR more heat
	C–C <i>l</i> stronger bond (than C–I bond) OR C–C <i>l</i> shorter bond (than C–I bond) OR C–C <i>l</i> bond is harder to break OR needs more energy to break C–C <i>l</i> bond OR ora ✓		Answer must refer to the C-C1 bond or C-I bonds
	Total	11	

Question	Expected Answers	Marks	Additional Guidance
2 (a)	method 1: fermentation of sugars or carbohydrates OR reaction with yeast with sugar or carbohydrates \checkmark $C_6H_{12}O_6 \rightarrow 2C_2H_5OH + 2CO_2 \checkmark$ method 2: hydration of ethene OR reaction of ethene with water OR reaction of steam with ethene \checkmark $C_2H_4 + H_2O \rightarrow C_2H_5OH \checkmark$	4	ALLOW sugar from equation ALLOW C ₂ H ₆ O in equation ALLOW correct multiples IGNORE state symbols ALLOW ethene from the equation IGNORE mention of any catalyst ALLOW C ₂ H ₆ O in equation OR H ₂ O over the arrow ALLOW correct multiples IGNORE state symbols
(b) (i)	$(CH_3)_2CO$ OR H_3C $(CH_3)_2CHOH + [O] \longrightarrow (CH_3)_2CO + H_2O \checkmark$	2	If name and formula given both need to be correct ALLOW propanone OR acetone IGNORE propone NOT incorrect named compound ALLOW C ₃ H ₈ O + [O] → C ₃ H ₆ O + H ₂ O ALLOW O instead of [O] ALLOW correct multiples
(ii)	CH ₃ CH ₂ COOH OR propanoic acid ✓ Any number or range of numbers between 1750–1640 (cm ⁻¹) for C=O ✓ Any number or range of numbers between 2500–3300 (cm ⁻¹) for O–H ✓	3	ALLOW C=O and O—H marks independent of compound identified i.e. stand alone marks ALLOW correct bonds shown by the appropriate absorption on the IR spectrum IGNORE reference to C—O bond
(c) (i)	2-methylpropan-2-ol ✓	1	ALLOW methylpropan-2-ol OR tertiarybutanol

Question	Expected Answers	Marks	Additional Guidance
(ii)	ester ✓	1	
(iii)	CH ₃ CO ₂ C(CH ₃) ₃ OR CH ₃ COOC(CH ₃) ₃	2	ALLOW skeletal formula OR displayed formula
	OR H ₃ C — C O — C(CH ₃) ₃		
	ester group shown ✓		ALLOW ester linkage even if rest of structure is wrong
	rest of molecule ✓		
	Total	13	

Q	Question		Answer	Mark	Guidance
3	(a)			1	IGNORE any structural or displayed formula shown even if wrong (ie treat as rough working)
	(b)		($M_{\rm r}$ of all reactants or $M_{\rm r}$ of all products) is 134.0 OR 134 OR ($M_{\rm r}$ of desired product) is 116.0 OR 116 \checkmark Atom economy = $100 \times \frac{116.0}{134.0} \checkmark$	2	Remember the marks are for the working out and not for the answer IGNORE lack of decimal place in answer ALLOW correct expressions to calculate the M_r or the atom economy eg Atom economy = $100 \times \frac{(6 \times 12) + (12 \times 1) + (2 \times 16)}{116 + 18}$ Award 2 marks for this expression: $100 \times \frac{116.0}{134.0}$ or similar expressions such as that above (subsumes 1st marking point)
	(c)	(i)	acid (catalyst) ✓ heat OR reflux ✓	2	ALLOW any acid, concentrated or dilute ALLOW 'high temperature' OR any temperature from 70 °C to 120 °C Warm is not sufficient but ALLOW warm to 80 °C IGNORE pressure

Question		Answer	Mark	Guidance
3 (c)	(ii)	maximum mass of ester than can be made is 9.7972973 (g) \checkmark % yield = $\frac{6.57}{9.80}$ × 100 \checkmark ALLOW 2 or more sig figs up to calculated value but rounded up correctly, ie ALLOW $\frac{6.57}{9.797}$ × 100 OR $\frac{6.57}{9.8}$ × 100	2	ALLOW moles of butan-1-ol = 0.08445946 AND moles of ester = 0.05663791 OR moles of butan-1-ol = $\frac{6.25}{74}$ AND moles of ester = $\frac{6.57}{116}$ for one mark ALLOW % yield = $\frac{0.05664}{0.08446}$ × 100 for one mark ALLOW 2 or more sig figs up to calculated value but rounded up correctly, ie $\frac{0.057}{0.084}$ ×100 OR $\frac{0.0566}{0.0845}$ ×100 Remember the marks are for the working out
(d)		Link between yield AND explanation required: (high percentage) yield shows a high % conversion (of reactants into products) ✓		ALLOW percentage yield takes into account the practical difficulties of the process OR high % yield very little experimental loss of product OR high % yield because the process is not reversible OR most of reactants react to form products DO NOT ALLOW 'a lot of product made'
		Link between atom economy AND explanation required: (low) atom economy shows a lot of waste (product) OR (low) atom economy shows not much desired product ✓	2	There are waste products is NOT sufficient Reaction forms many products is NOT sufficient ALLOW undesired product(s) as alternative for waste IGNORE a lot of by-products but ALLOW a lot of waste by-products ALLOW (low) atom economy shows a lot of HCl OR a lot of SO ₂ is made ALLOW (low) atom economy shows not much ester / butyl ethanoate made

Question	Answer	Mark	Guidance
(e)	NOTE: Comparison essential throughout, ie higher, less, etc. ANY TWO FROM Less waste (products) OR higher atom economy ✓		ALLOW more sustainable
	Less toxic reactants OR less toxic (waste) products OR less corrosive reactants OR less corrosive (waste) products OR less harmful reactants OR less harmful (waste) products OR less hazardous reactants OR less hazardous (waste) products ✓		ALLOW poisonous for toxic IGNORE 'dangerous' 'Water is produced' is not sufficient
	Cheaper starting materials OR more readily available starting materials ✓		Cheaper is not sufficient on its own
	Fewer steps OR one step rather than two steps ✓	2	IGNORE less energy OR easier to carry out OR reversible
	Total	11	