

Question			Expected Answers	Marks	Additional Guidance
2	(a)		method 1: fermentation of sugars or carbohydrates OR reaction with yeast with sugar or carbohydrates \checkmark $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \rightarrow 2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+2 \mathrm{CO}_{2} \checkmark$ method 2: hydration of ethene OR reaction of ethene with water OR reaction of steam with ethene \checkmark $\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \checkmark$	4	ALLOW sugar from equation ALLOW $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$ in equation ALLOW correct multiples IGNORE state symbols ALLOW ethene from the equation IGNORE mention of any catalyst ALLOW $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$ in equation OR $\mathrm{H}_{2} \mathrm{O}$ over the arrow ALLOW correct multiples IGNORE state symbols
	(b)	(i)		2	If name and formula given both need to be correct ALLOW propanone OR acetone IGNORE propone NOT incorrect named compound ALLOW $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}+[\mathrm{O}] \rightarrow \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}$ ALLOW O instead of [O] ALLOW correct multiples IGNORE state symbols
		(ii)	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$ OR propanoic acid Any number or range of numbers between 1750-1640 $\left(\mathrm{cm}^{-1}\right)$ for $\mathrm{C}=\mathrm{O} \checkmark$ Any number or range of numbers between 2500-3300 $\left(\mathrm{cm}^{-1}\right)$ for $\mathrm{O}-\mathrm{H} \checkmark$	3	ALLOW C=O and O—H marks independent of compound identified i.e. stand alone marks ALLOW correct bonds shown by the appropriate absorption on the IR spectrum IGNORE reference to $\mathrm{C}-\mathrm{O}$ bond
	(c)	(i)	2-methylpropan-2-ol \checkmark	1	ALLOW methylpropan-2-ol OR tertiarybutanol

Question	Expected Answers	Marks	Additional Guidance
(ii)	ester \checkmark	1	
(iii)	$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{OR} \mathrm{CH} \mathrm{CO}_{3} \mathrm{COC}\left(\mathrm{CH}_{3}\right)_{3}$ OR ester group shown rest of molecule \checkmark	2	ALLOW skeletal formula OR displayed formula ALLOW ester linkage even if rest of structure is wrong
	Total	13	

Question			Answer	Mark	Guidance
3	(a)			1	IGNORE any structural or displayed formula shown even if wrong (ie treat as rough working)
	(b)		(M_{r} of all reactants or M_{r} of all products) is 134.0 OR 134 OR (M_{r} of desired product) is 116.0 OR 116 Atom economy $=100 \times \frac{116.0}{134.0} \checkmark$	2	Remember the marks are for the working out and not for the answer IGNORE lack of decimal place in answer ALLOW correct expressions to calculate the M_{r} or the atom economy eg $\text { Atom economy }=100 \times \frac{(6 \times 12)+(12 \times 1)+(2 \times 16)}{116+18}$ Award 2 marks for this expression: $100 \times \frac{116.0}{134.0}$ or similar expressions such as that above (subsumes 1st marking point)
	(c)	(i)	$\begin{aligned} & \text { acid (catalyst) } \checkmark \\ & \text { heat OR reflux } \checkmark \end{aligned}$	2	ALLOW any acid, concentrated or dilute ALLOW 'high temperature' OR any temperature from $70^{\circ} \mathrm{C}$ to $120^{\circ} \mathrm{C}$ Warm is not sufficient but ALLOW warm to $80^{\circ} \mathrm{C}$ IGNORE pressure

Question		Answer	Mark	Guidance
3 (c)	(ii)	maximum mass of ester than can be made is 9.7972973 (g) $\% \text { yield }=\frac{6.57}{9.80} \times 100$ ALLOW 2 or more sig figs up to calculated value but rounded up correctly, ie ALLOW $\frac{6.57}{9.797} \times 100$ OR $\frac{6.57}{9.8} \times$ 100	2	ALLOW moles of butan-1-ol $=0.08445946$ AND moles of ester $=0.05663791$ OR moles of butan-1-ol $=\frac{6.25}{74}$ AND moles of ester $=\frac{6.57}{116}$ for one mark ALLOW $\%$ yield $=\frac{0.05664}{0.08446} \times 100$ for one mark ALLOW 2 or more sig figs up to calculated value but rounded up correctly, ie $\frac{0.057}{0.084} \times 100$ OR $\frac{0.0566}{0.0845} \times 100$ Remember the marks are for the working out
(d)		Link between yield AND explanation required: (high percentage) yield shows a high \% conversion (of reactants into products) Link between atom economy AND explanation required: (low) atom economy shows a lot of waste (product) OR (low) atom economy shows not much desired product \checkmark	2	ALLOW percentage yield takes into account the practical difficulties of the process OR high \% yield very little experimental loss of product OR high \% yield because the process is not reversible OR most of reactants react to form products DO NOT ALLOW 'a lot of product made' There are waste products is NOT sufficient Reaction forms many products is NOT sufficient ALLOW undesired product(s) as alternative for waste IGNORE a lot of by-products but ALLOW a lot of waste by-products ALLOW (low) atom economy shows a lot of HCl OR a lot of SO_{2} is made ALLOW (low) atom economy shows not much ester / butyl ethanoate made

Question		Answer	Mark	Guidance		
(e)	$\begin{array}{l}\text { NOTE: Comparison essential throughout, ie higher, less, } \\ \text { etc. } \\ \text { ANY Two FROM } \\ \text { Less waste (products) } \\ \text { OR higher atom economy } \checkmark \\ \text { Less toxic reactants } \\ \text { OR less toxic (waste) products } \\ \text { OR less corrosive reactants } \\ \text { OR less corrosive (waste) products } \\ \text { OR less harmful reactants } \\ \text { OR less harmful (waste) products } \\ \text { OR less hazardous reactants } \\ \text { OR less hazardous (waste) products } \checkmark \\ \text { Cheaper starting materials } \\ \text { OR more readily available starting materials } \checkmark \\ \text { Fewer steps } \\ \text { OR one step rather than two steps } \checkmark\end{array}$	ALLOW more sustainable				
		ALLOW poisonous for toxic			$]$	IGNORE 'dangerous'
:---						

